澳门大阳城122.ccapp官方下载

至今,GenScript的服务及产品已被Cell, Nature, Science, PNAS等1300多家生物医药类杂志引用近万次,处于行业领先水平。NIH、哈佛、耶鲁、斯坦福、普林斯顿、杜克大学等约400家全球著名机构使用GenScript的基因合成、多肽服务、抗体服务和蛋白服务等成功地发表科研成果,再次证明GenScript 有能力帮助业内科学家Make research easy.

CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum

Nat Commun. 2016; 
Jiang Y, Qian F, Yang J, Liu Y, , Dong F, Xu C, Sun B, , Chen B, Xu X, Li Y, Wang R, Yang S,
Products/Services Used Details Operation
Gene Synthesis To generate pXMJ19ts-Plcpf1, pXMJ19ts-Pncas9 was used as a template to amplify a B5.7 kb fragment of pSC101-pBL1ts-Knr with primers P22/P23. A B3.9 kb fragment of PlacM-FnCpf1 was amplified using a synthetic C. glutamicum codon-optimized FnCpf1 (GenScript) as a template and primers P24/P25. Get A Quote

摘要

Corynebacterium glutamicum is an important industrial metabolite producer that is difficult to genetically engineer. Although the Streptococcus pyogenes (Sp) CRISPR-Cas9 system has been adapted for genome editing of multiple bacteria, it cannot be introduced into C. glutamicum. Here we report a Francisella novicida (Fn) CRISPR-Cpf1-based genome-editing method for C. glutamicum. CRISPR-Cpf1, combined with single-stranded DNA (ssDNA) recombineering, precisely introduces small changes into the bacterial genome at efficiencies of 86-100%. Large gene deletions and insertions are also obtained using an all-in-one plasmid consisting of FnCpf1, CRISPR RNA, and homologous arms. The two CRISPR-Cpf1-assisted systems enabl... More

关键词