澳门大阳城122.ccapp官方下载

至今,GenScript的服务及产品已被Cell, Nature, Science, PNAS等1300多家生物医药类杂志引用近万次,处于行业领先水平。NIH、哈佛、耶鲁、斯坦福、普林斯顿、杜克大学等约400家全球著名机构使用GenScript的基因合成、多肽服务、抗体服务和蛋白服务等成功地发表科研成果,再次证明GenScript 有能力帮助业内科学家Make research easy.

Co-Inactivation of GlnR and CodY Regulators Impacts Pneumococcal Cell Wall Physiology.

PLoS ONE. 2015; 
Johnston C, Bootsma HJ, Aldridge C, Manuse S, Gisch N, Schwudke D, Hermans PW, Grangeasse C, Polard P, Vollmer W, Claverys JP.
Products/Services Used Details Operation
Gene Synthesis Mutation of CodY binding site in ami promoter In order to mutate the CYbs in the ami promoter region, a fragment of DNA of 1,000 bp, with the CYbs (AATTTTCAGAATATT) replaced by a sequence containing an NcoI restriction site (GCTAGGGATCCGCTA) and flanked on either side by 500 bp of DNA was synthesized (Genscript). Get A Quote

摘要

CodY, a nutritional regulator highly conserved in low G+C Gram-positive bacteria, is essential in Streptococcus pneumoniae (the pneumococcus). A published codY mutant possessed suppressing mutations inactivating the fatC and amiC genes, respectively belonging to iron (Fat/Fec) and oligopeptide (Ami) ABC permease operons, which are directly repressed by CodY. Here we analyzed two additional published codY mutants to further explore the essentiality of CodY. We show that one, in which the regulator of glutamine/glutamate metabolism glnR had been inactivated by design, had only a suppressor in fecE (a gene in the fat/fec operon), while the other possessed both fecE and amiC mutations. Independent isolation of thre... More

关键词