澳门大阳城122.ccapp官方下载

至今,GenScript的服务及产品已被Cell, Nature, Science, PNAS等1300多家生物医药类杂志引用近万次,处于行业领先水平。NIH、哈佛、耶鲁、斯坦福、普林斯顿、杜克大学等约400家全球著名机构使用GenScript的基因合成、多肽服务、抗体服务和蛋白服务等成功地发表科研成果,再次证明GenScript 有能力帮助业内科学家Make research easy.

Surface attachment, promoted by the actomyosin system of Toxoplasma gondii is important for efficient gliding motility and invasion

BMC Biology. 2018; 
Jamie A. Whitelaw, Fernanda Latorre-Barragan, Simon Gras, Gurman S. Pall, Jacqueline M. Leung, Aoife Heaslip, Saskia Egarter, Nicole Andenmatten, Shane R. Nelson, David M. Warshaw, Gary E. Ward and Markus Meissner
Products/Services Used Details Operation
Gene Synthesis The act1 ORF containing the mutation C408G at the nucleotide level which confers the amino acid mutation of A136G was synthesised by GenScript (USA). Get A Quote

摘要

Background: Apicomplexan parasites employ a unique form of movement, termed gliding motility, in order to invade the host cell. This movement depends on the parasite’s actomyosin system, which is thought to generate the force during gliding. However, recent evidence questions the exact molecular role of this system, since mutants for core components of the gliding machinery, such as parasite actin or subunits of the MyoA-motor complex (the glideosome), remain motile and invasive, albeit at significantly reduced efficiencies. While compensatory mechanisms and unusual polymerisation kinetics of parasite actin have been evoked to explain these findings, the actomyosin system could also play a role distinct from ... More

关键词

Actin, Myosin, Motility, Attachment, Toxoplasma, Apicomplexa, Host cell invasion, Membrane flow